1 __author__ = "WSX" 2 import cv2 as cv 3 import numpy as np 4 5 def lapalian_demo(image): #拉普拉斯算子 6 #dst = cv.Laplacian(image, cv.CV_32F) #内置函数来实现 7 #lpls = cv.convertScaleAbs(dst) 8 kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) #自定义来实现 9 dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)10 lpls = cv.convertScaleAbs(dst)11 cv.imshow("lapalian_demo", lpls)12 13 14 def sobel_demo(image): #sobel算子15 grad_x = cv.Scharr(image, cv.CV_32F, 1, 0) #x的一阶导数16 grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)17 gradx = cv.convertScaleAbs(grad_x) # 先绝对值 再转到8位图像上18 grady = cv.convertScaleAbs(grad_y)19 cv.imshow("gradient-x", gradx) #左右有差异的表现20 cv.imshow("gradient-y", grady) #上下有差异的表现21 gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0) #一起表现22 cv.imshow("gradient", gradxy)23 24 def main():25 img = cv.imread("1.JPG")26 cv.namedWindow("Show", cv.WINDOW_AUTOSIZE)27 cv.imshow("Show", img)28 sobel_demo(img)29 30 cv.waitKey(0)31 cv.destroyAllWindows()32 33 main()